

1

ARCADIA REFERENCE:

WORKFLOW AND ACTIVITIES
Arcadia Engineering Activities

Contents & Orchestration

Jean-Luc Voirin

©Thales 2023

2

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Table of Contents
1 Scope of this document .. 3

2 Arcadia Reference Documents... 4

3 Arcadia Workflow at a glance .. 7

4 Focus on model-building activities ... 8

5 Arcadia Tasks and Activities .. 10

5.1 ANALYSE NEEDS & CONTEXT ... 10

5.1.1 Perform CUSTOMER OPERATIONAL NEED ANALYSIS 10

5.1.2 Perform SYSTEM NEED ANALYSIS .. 22

5.2 DESIGN THE SOLUTION ARCHITECTURE .. 38

5.2.1 Explore Solution Space & Alternatives ... 39

5.2.2 Design LOGICAL ARCHITECTURE ... 39

5.2.3 Design PHYSICAL ARCHITECTURE ... 57

5.2.4 Analyse the solution .. 76

5.3 PREPARE AND PERFORM DEVELOPMENT AND IVVQ .. 78

5.3.1 Define BUILDING STRATEGY - contracts for development & IVVQ 79

5.3.2 Perform Sub-System Engineering ... 91

5.3.3 Perform HW & mechanical engineering ... 91

5.3.4 Perform SW engineering .. 91

5.3.5 Define IVVQ Environment .. 91

5.3.6 Perform IVVQ ... 94

5.4 DEFINE AND EXPLOIT THE PRODUCT LINE ... 95

5.4.1 Define Product Line Variability ... 96

5.4.2 Apply Variability to product & projects assets .. 99

3

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

1 Scope of this document
ARCADIA is a tooled method devoted to systems & architecture engineering, supported by
Capella modelling tool.

It describes the detailed reasoning to

 understand the real customer need,
 define and share the product architecture among all engineering stakeholders,
 early validate its design and justify it,
 ease and master Integration, Validation, Verification, Qualification (IVVQ).

It can be applied to complex systems, equipment, software or hardware architecture
definition, especially those dealing with strong constraints to be reconciled (cost,
performance, safety, security, reuse, consumption, weight…).

It is intended to be used by most stakeholders in system/product/software or hardware
definition and IVVQ as their common engineering reference and collaboration support.

ARCADIA stands for ARChitecture Analysis and Design Integrated Approach.

 This document provides a detailed view of engineering activities defined and supported by
Arcadia, their relations and the way they interact.
The high level tasks and activities described in Arcadia User Guide are duplicated in this
document, but each of them is further decomposed and detailed, down to elementary
activities, including lower level figures.

4

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

2 Arcadia Reference Documents
An in-depth introduction and description of Arcadia, with explanations on the method, on the
language, illustrated by detailed examples of application, can be found in the Arcadia
reference book:

Jean-Luc Voirin, ‘Model-based System and Architecture Engineering with the Arcadia
Method’, ISTE Press, London & Elsevier, Oxford, 2017

A presentation of Arcadia main principles and concepts can be found in the following online
documents, including this one:

 Arcadia Engineering Landscape: an introduction to Engineering as supported by Arcadia

 Arcadia User Guide: a first level description of Arcadia approach and main engineering Tasks

 Arcadia Reference - Activities: an in-depth description of Arcadia tasks and activities

 Arcadia Reference - Data Model: data created and exploited by these activities

 Arcadia Reference - Capabilities: main processes supporting engineering

 Arcadia Language - MetaModel: a more formal description of Arcadia language concepts

 Arcadia Q&A: real life questions and answers on deploying Arcadia

See table ‘Summary of reference Documents Contents’ next page.

For easier navigation capabilities (including in diagrams, between activities and data, etc.), a
web version can be browsed here.

Advanced practitioners in modelling and Arcadia can also access the Arcadia-compliant
Capella model of Arcadia, from which this material is automatically extracted, here.

5

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

6

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

7

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

3 Arcadia Workflow at a glance
This figure provides a synthetic view of Arcadia tasks and major categories of interactions
between these tasks.

REMINDER:

Iterations and loops are necessary in real life conditions, yet they are not represented here
for sake of simplicity.
 Although the workflow described here appears to be straightforward, activities may be
carried out in a different order; however, for best quality of engineering results, each activity
should not be fully completed without having checked its outcome against its expected
entries for consistency.

 The links mentioned here are to be considered as dependency links, but not necessarily
time-related ordering of steps & tasks.
 While preserving these dependencies, any process or order can be used:
 - top-down or waterfall approach,
 - bottom-up and reuse-driven approaches,
 - iterative or incremental processes,
 - ...

Each high-level task and its detailed activities are described below.

8

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

4 Focus on model-building activities
This figure introduces the major core aspects (called perspectives) of Arcadia framing for
engineering, each producing engineering data useful for others. It focuses on core
perspectives structuring both definition and collaboration, giving one level of detail for each
perspective.

NOTES:

Iterations and loops are necessary in real life conditions, yet they are not represented here
for sake of simplicity.
 Although the workflow described here appears to be straightforward, activities may be
carried out in a different order; however, for best quality of engineering results, each activity
should not be fully completed without having checked its outcome against its expected
entries for consistency.

 The links mentioned here are to be considered as dependency links, but not necessarily
time-related ordering of steps & tasks.
 While preserving these dependencies, any process or order can be used:
 - top-down or waterfall approach,
 - bottom-up and reuse-driven approaches,
 - iterative or incremental processes,
 - …

9

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

10

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5 Arcadia Tasks and Activities
Each activity is described below, along with its inputs and outputs, other activities interacting
with it, and its sub-activities.

For key activities, the way to elaborate data is also described in each activity description
field, as indicated by <Data elaboration description> tag. Engineering data mentioned in
this description (identified as **data**) are described in another document.

5.1 ANALYSE NEEDS & CONTEXT
Understand and analyse the global need of stakeholders down to customer and system
requirements

See sub-tasks description

5.1.1 Perform CUSTOMER OPERATIONAL NEED
ANALYSIS

The first perspective on system engineering brought by Arcadia focuses on analyzing the
stakeholders needs and goals, their expected missions and activities, far beyond (and often
before) customer requirements. This analysis also contributes ensuring adequate system
need understanding with regard to its real operational use and IVVQ conditions, but it does
not consider the solution or system per se.

Outputs of this engineering activity mainly consist of an “operational architecture” which
describes and structures the stakeholders need in terms of actors/users, their operational
capabilities and activities (including operational use scenarios with dimensioning parameters,
and operational constraints such as safety, security, lifecycle, etc.).

See <Data elaboration description> below

Engineering goals

 Understand the real Customer Need to address, in terms of Tasks to be completed by
users

 Check the Need Consistency, Completeness

11

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Collect Material for future technical Trade-offs, Optimisations, Negotiations with
Customer

 Ensure realism/relevance of IVVQ operational scenarios & tests.

Tasks to be completed during this step

 Define Operational Missions & Capabilities

 Perform an operational Need Analysis

Stop Criteria

This step is achieved when agreement with higher level stakeholders (incl. Customer if
possible) is obtained on the description of the operational need.

Contributors & Competencies

Major competencies required to complete this step are suggested below:

Required Competencies

Major Expected

Contribution

Possible Contributors (*)

Domain knowledge

 Chief architect
 Customer
 Operational expert
 Systems engineering

manager
 Specialty engineering

expert
 IVVQ manager
 Product line manager
 Simulation expert
 Program manager

Operational Domain

Operational Use &
constraints

Product & Technical Domain
(incl. Product line)

Product line constraints,
capability gaps

Systems engineering -

Design

12

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Operational Analysis OA modeling

Modeling & viewpoint
engineering techniques

Modeling techniques

Value Engineering

Customer & Stakeholders
Stakes & expected value

Systems engineering -

Specialties

Technico-operational
simulation

Realism of operational
scenarios & OA

Specialties engineering
(safety, perf, RAMST…)

Operational constraints &
cases

Systems engineering /

IVVQ

Test & Trials Strategy Plan

Relevant operational
scenarios

Integration means definition

Operational test capabilities

(*) Depending on each organisation, competencies may be allocated to different actors; the
following contributors list is therefore just an example to be adapted to each organisation:

<Data elaboration description>

The **Operational Mission Analysis** identifies what the end users expect to carry out, starting with

Users Missions & Capabilities : Missions being major goals of main stakeholders, Operational
Capabilities being services that end users should be able to realise to fulfil mission.

Then it identifies **Operational Entities/actors** involved in the mission, the **Operational
Activities** they are expected to perform, and "user stories" described as **Operational
Processes** (or tasks) involved in each capability, and time-related **Operational
Scenarios** involving **Operational Activities**.

This process may lead to early defining constraints on the expected system itself, that can be
captured in an initial version of **System Need Specification**, and **Textual
Requirements**.

<Data elaboration description end>

This figure provides an inner view of the task Perform CUSTOMER OPERATIONAL NEED
ANALYSIS, in the context of Arcadia core perspectives.

13

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

5.1.1.1 Define Operational Missions and Capabilities

Identify what the end users expect to carry out,

 Missions, major goals of main stakeholders

 Operational Capabilities the system/SW should contribute to

Here, capabilities should be seen as quantified overall operational goals, results, services
that are expected from end users[1].
 e.g. "localise", "follow route", "track"; or more extensively: “ability to detect/locate a given
kind of target in such area in less than such time”.

Assess qualitative but also quantitative metrics or parameters to quantify expected
capabilities (e.g. precision of localisation).

14

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Identify any constraints likely to impact capability fulfilment, such as

 Concepts & Doctrine,

 Organisation functioning,

 Infrastructures,

 Equipment (including system/SW),

 Whole system life cycle cost,

 Logistics, Deployment, Sustainability,

 Human Factors,

 Competencies, Training, …

Note: This analysis is often known as “DOTMLPF” (Doctrine, Organization, Training, Materiel,
Leadership and Education, Personnel, and Facilities).

Identify capability gaps (capability analysis[2]) between expressed capability need above ,
and existing systems (including systems of previous generations, and competitors).

[1] Capability: “The ability to execute a specified course of action. (A capability may or may
not be accompanied by an intention.)” US DoD;

“The appropriation combination of competent people, knowledge, money, technology,
physical assets, systems and structures necessary to deliver a specified level of performance
in pursuit of the organisation’s objectives, now and/or in the future” NZ Gov.(

[2] “Capability Analysis : A tool of statistical measurement used to determine capability by
comparing a process's actual performance with customer expectations.”
www.surveymethods.com

“Capability analysis is a set of calculations used to assess whether a system is statistically
able to meet a set of specifications or requirements.” www.capability-analysis.com

Input:

 Customer Requirements, non formal or textual description.

 Other Customer documents, including Use Cases, Scenarios, Domain Analysis,
Capabilities Analysis, Operational and first System models,

15

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Customer and end users interviews.

 Existing previous generation systems.

Output:

 Missions, goals & capabilities.

 Capability gaps of existing solutions.

Target documents:

 System Segment Specification (SSS)

 Operational Concept Document (OCD) – for more detailed description if needed.

Verification and Consistency checks:

External consistency:

 Between customer documents, and capability analysis products (including models).

Internal consistency:

 Between outputs of the analysis.

 Verify the Need Description: coherent, complete, relevant: no contradiction, no gap,
no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

16

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.1.1.1 Identify main Stakeholders, actors and end users
including expected users of the system, operational entities, organisations and actors that
should interact with end users

5.1.1.1.2 Identify Missions / Goals of end users & stakeholders
both high level objectives and contextual ones.

including unexpected or hostile stakeholders goals.

5.1.1.1.3 Identify constraints likely to impact capability fulfilment
such as

17

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·Concepts & Doctrine,

·Organisation functioning,

·Infrastructures,

·Equipment (including system/SW),

·Whole system life cycle cost,

·Logistics, Deployment, Sustainability,

·Human Factors,

·Competencies, Training, …

Note: This analysis is often known as “DOTMLPF” (Doctrine, Organization, Training, Materiel,
Leadership and Education, Personnel, and Facilities).

5.1.1.1.4 Identify operational capabilities necessary for these missions /
goals

Here, capabilities should be seen as quantified overall operational goals, results, services
that are expected from end users .

e.g. "localise", "follow route", "track"; or more extensively: “ability to detect/locate a given
kind of target in such area in less than such time”.

5.1.1.1.5 Identify capability gaps of the state-of-the-art
between expressed capability need above , and existing systems (including systems of
previous generations, and competitors), organisations, etc.

(capability analysis)

5.1.1.2 Perform an Operational Need Analysis

Based on the former missions, goals & capabilities of end users, define the organisation,
behaviour and results expected from them:

 Operational Context & Stakeholders: organisation using the system, actors,
geographical or organisational nodes / operational entities

 Operational processes (or tasks), necessary for each expected capability

18

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Activities being necessary to perform each operational process, allocated to actors,
operational entities

 Relationships & interchanged data/information between activities (and actors);
including required standards, interfaces

 Operational modes & states (e.g. mission phases…)

 Operational Scenarios illustrating superimposition of processes for a given situation,
orchestration of operational activities.

Identify all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate missions, activities, actors… and associated scenarios (including worst case or
feared events for each of them), and relate them to operational scenarios: e.g.:

 Performance issues, reactivity/latency constraints…

 Parallelism in activities

 Human factors

 Safety-related issues, concerning actors and neighbourhood/environment

 Security issues

 ...

Evaluate operational importance/value of each customer requirement (how much it
contributes to reaching expected goals and capabilities, operational activities).

Input:

 Customer Requirements, non formal or textual description.

 Other Customer documents, including Use Cases, Scenarios, Domain Analysis,
Capabilities Analysis, Operational and first System models,

 Customer and end users interviews.

 Existing previous generation systems.

Output:

 Missions, goals & capabilities.

19

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Operational Analysis results: Consolidated Use Cases, Scenarios, operational
processes and Activities, data and exchanged data flows, organisational actors and
nodes/organisations, operational modes & states.

Target documents:

 System Segment Specification (SSS)

 Operational Concept Document (OCD) – for more detailed description if needed.

Verification and Consistency checks:

External consistency:

 Between customer documents, and operational analysis products (including models).

 Checking need completeness (e.g. a requirement not relatable to any operational
activity might denote a lack in need analysis, and vice versa),

Internal consistency:

 Between outputs of the analysis.

 Verify the Operational Need Description: coherent, complete, relevant: no
contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

20

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.1.2.1 Formalise Missions / Goals & Capabilities
later linked to operational scenarios and processes involved

5.1.1.2.2 Formalise stakeholders, actors...
Operational Context & Stakeholders

-organisation using the system,

-actors,

-geographical or organisational nodes / operational entities

5.1.1.2.3 Define operational activities
either for each stakeholder, or for each mission/capability

21

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.1.2.4 Allocate activities to stakeholders
activities are expected to contribute to missions and capabilities

5.1.1.2.5 Define operational interactions
interactions as exchanges, communications, shared information, events or commands
between activities and therefore between stakeholders

interactions can be allocated to physical communication means between stakeholders

5.1.1.2.6 Define operational Data
Data manipulated by stakeholders, to be exchanged between them;

Relationships & interchanged data/information between activities (and actors); including
required standards, interfaces

5.1.1.2.7 Define operational Processes
Operational processes (or tasks), necessary for each expected capability / mission, defined
by chaining different activities

5.1.1.2.8 Define operational Scenarios
expressing the time-related interactions between activities and between stakeholders, using
operational interactions previously defined; , necessary for each expected capability /
mission

5.1.1.2.9 Define operational Modes & States
Allocated to stakeholders

Example: missions modes or phases, context for capability use, for operational process
involvement...

including activities available in each mode or state

5.1.1.2.10 Identify operational non-functional Constraints
all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate missions, activities, actors… and associated scenarios (including worst case or
feared events for each of them), and relate them to operational scenarios: e.g.

22

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·Performance issues, reactivity/latency constraints…

·Parallelism in activities

·Human factors

·Safety-related issues, concerning actors and neighbourhood/environment

·Security issues

·…

5.1.1.2.11 Validate operational Need
against all former elements.

5.1.1.2.12 Link & evaluate customer Requirements
Formalise operational requirements using activities, processes, scenarios, modes & states...
and link them to eachother.

Evaluate operational importance/value of each customer requirement (how much it
contributes to reaching expected goals and capabilities, operational activities), thanks to
these links.

5.1.2 Perform SYSTEM NEED ANALYSIS

This perspective focuses on the system itself, in order to define how it can contribute to
satisfy the former operational needs, along with its expected behavior and qualities. The
main goal at that point is to check the feasibility of stakeholders requirements (cost,
schedule, technology readiness, etc.) and if necessary, to provide means to renegotiate their
content.

Outputs of this engineering activity mainly consist of system functional need descriptions
(system capabilities, functions or services, functional chains, and scenarios), interoperability
and interaction with the users and external systems (functions, exchanges plus non-
functional constraints).

See <Data elaboration description> below

Engineering goals

 Define functional and non-functional need/expectations for system/SW

23

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Check Feasibility of Requirements (tech., cost, schedule, ...)

 Find most structuring/constraining Requirements for operational purpose

 Evaluate their impact on design & integration – therefore their cost range

 Confront Requirements with Reuse opportunities

 Get technical Material to support Negotiation by evaluating operational added value
of each requirement

Tasks to be completed during this step

 Perform a Capability Trade-off Analysis

 Perform a functional and non-functional Analysis

 Formalise and consolidate Requirements

Stop Criteria

This activity is achieved when are obtained

 risk mitigation on System/SW definition (requirements consistency, functional need
validity, cost estimation, adequacy to operational need)

 and sufficient definition for decision making to proceed with further design (early
architecture & EPBS, requirements, system/SW functional need)

 it usually requires agreement with higher level stakeholders (incl. customer).

Contributors & Competencies

Major competencies required to complete this step are suggested below:

Required Competencies

Major Expected

Contribution

Possible Contributors (*)

Domain knowledge

 Chief architect
 Customer
 Systems engineering

manager

24

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Functional analyst
 Specialty engineering

expert
 IVVQ manager
 Product line manager
 Simulation expert
 Program manager

Product & Technical Domain
(incl. Product line)

Product line constraints,
capability gaps

Systems engineering -

Design

Functional & non functional
Analysis

System Analysis

Modeling & viewpoint
engineering techniques

Modeling techniques

Value Engineering

Cost effectiveness of
functions

Systems engineering -

Specialties

Technico-operational
simulation

Adequacy to operational
scenarios & OA

Technical Simulation

validity of functional
behaviour

Specialties engineering
(safety, perf, RAMST…)

Non-functional constraints

Systems engineering /

IVVQ

Test & Trials Strategy Plan

Relevant non-functional
scenarios

Integration means definition

Functional/non-functional
test capabilities

(*) Depending on each organisation, competencies may be allocated to different actors; the
following contributors list is therefore just an example to be adapted to each organisation:

25

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

<Data elaboration description>

Based on User/Customer **Textual Requirements**, and on **Operational Mission
Analysis**, the **System Need Specification** is performed to scope expectations on the
system.

Specified Functions or services required from the system to contribute to each
Operational Activities are identified;
 Spec. Functional Exchanges between the system and **External systems/actors**
(with which it is expected to interact) are defined, along with the **Spec. Exchange
contents** to be exchanged between them.

The use cases describing the way the system should be used are captured by **Specified
Capabilities**, illustrated by **Spec. Functional Chains** and **Specified Scenarios**; each
of them involves **Specified Functions** to express expectations on the system. These use
cases should also be inspired by **Operational Processes** and **Operational Scenarios**,
and traced towards them.

All these elements are related to user **Textual Requirements**, and can be also
complemented by system-level **Textual Requirements**.

<Data elaboration description end>

This figure provides an inner view of the task Perform SYSTEM NEED ANALYSIS, in the
context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

26

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.2.1 Perform a Capability Trade-off Analysis

Drive a multi-parametric analysis, in order to identify which parameters impact mainly the
expected capabilities, in a wider scope than just system intrinsic performance; these
parameters are selected based on operational capability definition above:

 Concepts & Doctrine,

 Organisation functioning,

 Infrastructures,

 Equipment (including system/SW),

 Whole System life cycle cost,

 Logistics, Deployment, Sustainability,

 Human Factors,

27

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Competencies, Training, …

(Known as “DOTMLPF” analysis (Doctrine, Organization, Training, Materiel, Leadership and
Education, Personnel, and Facilities)).

Then choose the best trade-off between all the former parameters, to elect the best
combination.

Functional and non-functional analysis of the system/SW will then be applied to this selected
trade-off results, that will orient the analysis.

Some capability gaps may then appear (unreachable capacities or performance), that must
affect system use, deployment, requirements, and definition; iterate with operational need
analysis if needed.

Operational gap with product line and reused assets may also be identified here if needed.

Input:

 Operational Analysis outputs

Output:

 Results of multi-parametric analysis

 Description of the trade-off solution orientation regarding the different parameters
considered.

Target documents:

 System/Segment Specification (SSS)

 Operational Concept Document (OCD) – for more detailed description if needed.

Verification and Consistency checks:

External consistency:

 Between Capabilities / operational analysis, and trade-off results

Internal consistency:

28

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Between candidate solutions, and between the elected solution and multi-parameters
quantification.

 Verify the Capability Description: coherent, complete, relevant: no contradiction, no
gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

5.1.2.1.1 Drive a multi-parametric analysis (organisation, equipment,
training, logistics...)

in order to identify which parameters or factors impact mainly the expected capabilities, in a
wider scope than just system intrinsic performance; these parameters or factors are selected
based on operational capability definition above:

·Concepts & Doctrine,

29

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·Organisation functioning,

·Infrastructures,

·Equipment (including system/SW),

·Whole System life cycle cost,

·Logistics, Deployment, Sustainability,

·Human Factors,

·Competencies, Training, …

(Known as “DOTMLPF” analysis (Doctrine, Organization, Training, Materiel, Leadership and
Education, Personnel, and Facilities)).

5.1.2.1.2 Define and select relevant alternatives (based on parameters
adjustment)

select the most likely and viable combinations of parameters or factors in order to achieve
expected capabilities

5.1.2.1.3 Choose the best trade-off between alternatives
find the optimum between parameters to fulfil expected capabilities

5.1.2.1.4 Check for possible Capability Gaps
unreachable capacities or performance, that may affect Capability fulfilment, system use,
deployment, requirements, and definition; iterate with operational need analysis if needed

5.1.2.2 Perform a functional and non-functional Analysis

Define System/SW required System Functions (functions of the system directly driven by the
operational need), shared information and data exchanges/interfaces, to satisfy operational
Need.

More precisely, from operational activities description and capability trade-off above plus
customer requirements,

 Identify activities that should be supported by the system/SW and its users

30

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Identify functions required to satisfy and support all these activities

 Complement them with functions that could fill the capability gaps detected above

 Allocate these functions respectively to system/SW Vs users (incl. Human Factors)

 List and detail information, data flows, managed, exchanged and required by all
these functions (internal or external to system); including required standards &
interfaces

 Identify functional chains traversing the system/SW in order to support operational
processes and capabilities (traversing functions & data flows)

 Identify system/SW modes & states, relate them to functions

 Allocate operational scenarios to system/SW and users, functional chains, modes &
states, therefore defining system scenarios; enrich them if needed

 Create and maintain traceability links with operational analysis (e.g. functions wrt
activities, functional chains wrt operational processes, system scenarios wrt
operational scenarios).

Identify all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate fonctions, functional chains, actors… and associated scenarios, and relate them
to system scenarios: e.g.

 Identify non-functional constraints (performance, safety…) and relate them to
concerned functions, functional chains…

 Identify industrial constraints not coming from customer/user: ability to produce, to
test, to maintain, to sub-contract…

 When intending to reuse existing assets, check this functional/non-functional analysis
against these assets for compatibility.

 Enrich system scenarios with non-functional & industrial constraints

 Identify and select main (non functional) viewpoints (concerns) (*) susceptible to
impact the Architecture Definition & breakdown.

 Each viewpoint should emphasise a specific set of constraints or expected behaviour,
quality, respect of non-functional properties… At least one viewpoint should be
dedicated to Reuse and Product Policy.

 Try to order them in terms of importance, relative priority.

Ensure traceability/justification links between operational and functional/non-functional
analyses, and check consistency/coherency between them.

31

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

If necessary, envisage retroaction on operational need analysis (e.g. to change actors role
for safer behaviour…).

Input:

 Operational Analysis outputs

 Customer Requirements

Output:

 Functional & non-functional analysis result (System functional breakdown + dataflow,
functional chains, non functional constraints, scenarios…)

 Traceability between Operational & System analyses

 List of relevant /critical viewpoints for the target system architecture

Target documents:

 System/Segment Specification (SSS)

Verification and Consistency checks:

External consistency:

 Between Operational activities/data and System functions/data…

Internal consistency:

 Between all functional & non-functional elements

 Verify the functional/non-functional Need Description: coherent, complete, relevant:
no contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

32

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.2.2.1 Define system users/actors
among operational Actors, those interacting with the system, including system users

5.1.2.2.2 Define System required Capabilities
based on operational capabilities

5.1.2.2.3 Define functions to be achieved by system & users
based on activities allocated to those actors that are users of the system, Identify functions
required to satisfy and support all these activities;

Complement them with functions that could fill the capability gaps detected above

5.1.2.2.4 Allocate functions to the system and to users
considering different alternatives and possible contributions of the system, and workshare
between the system and external actors.

including workshare between operators/users own work, human tasks assisted by the
system, and fully automated tasks.

33

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.2.2.5 Check & Ensure traceability/justification links with former
perspective

between functions and operational activities, functional chains and operational processes,
data and information...

including checking consistency/coherency between them.

5.1.2.2.6 Define functional dataflows & exchanges
managed, exchanged and required by all functions (internal or external to system); including
required standards & interfaces

5.1.2.2.7 Define exchanged Items
notably defining which sets of data (or information, or material…) are to be considered as a
whole for this exchange (at the same time, coherently…).

5.1.2.2.8 Define Information and Data
managed, exchanged and required by all functions (internal or external to system); including
those exchanged with users or external systems

5.1.2.2.9 Define Functional Chains traversing the system
in order to support operational processes and capabilities (succession of functions and
functional exchanges traversing data flows);

in order to express non-functional constraints such as latency, criticity, etc

5.1.2.2.10 Define functional Scenarios
Allocate operational scenarios to system and users, functional chains, modes & states,
therefore defining system scenarios; enrich them if needed

5.1.2.2.11 Define System Modes & States
including functions available in each mode or state

34

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.2.2.12 Identify non-functional constraints
all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate fonctions, functional chains, actors… and associated scenarios, and relate them
to system scenarios: e.g.

·Identify non-functional constraints (performance, safety…) and relate them to concerned
functions, functional chains…

·Identify industrial constraints not coming from customer/user: ability to produce, to test, to
maintain, to sub-contract…

·When intending to reuse existing assets, check this functional/non-functional analysis
against these assets for compatibility.

·Enrich system scenarios with non-functional & industrial constraints

·Identify and select main (non functional) viewpoints (concerns) (*) susceptible to impact
the Architecture Definition & breakdown.

Each viewpoint should emphasise a specific set of constraints or expected behaviour, quality,
respect of non-functional properties… At least one viewpoint should be dedicated to Reuse
and Product Policy.

·Try to order them in terms of importance, relative priority.

5.1.2.2.13 Validate functional Analysis
against all former elements.

5.1.2.3 Formalise and consolidate Requirements

Define system/SW requirements

Define Requirements to implement the former functions, data exchanges, non-functional
constraints… and complement customer-originated requirements.

Maintain bi-directional traceability between Requirements and system/SW Need functions,
data flows, interfaces, scenarios…

When Reuse is expected, compare and map requirements with existing components to be
reused.

Define an early architecture

35

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Build an early architectural View of the System/SW, based on previous capability engineering
choices & results,

 Focusing on main constraints impacting design & IVVQ (performance, critical parts,
dynamic behaviour, real-time issues, system modes & states, development &
ownership cost… and reuse of existing assets);
 Note: restrict early architecture to most significant and risky aspects and parts of the
system/SW

 Allocating system/SW Need functions, data flows …to components of this architecture

 Dealing with first non-functional requirements (Quality of Service, industrial
constraints, subcontracting, modularity, Product Line approach, design to cost…)

 In conformity with operational Need.

The approach to build this early architecture is the same as logical/physical architecture
design described later in this document, and should not be restricted to a functional
breakdown.

Check (internal) Requirements against early architecture and need analysis.

This should at least lead to evaluate, for each requirement:

 the importance of its contribution to operational need
 by following links from requirement to functions implementing it, then links from
functions towards operational activities

 its feasibility (against early architecture; see above)
 by following links from requirement to functions implementing it, then from functions
to components of architecture,
 and consideration of non-functional constraints and viewpoints

 its qualitative cost range (through complexity to map on architecture, integration
issues, complexity of validation scenarios, of preselected technologies when
significant…).

When a particular requirement is not achievable (cost, feasability, …), return to the initial
operational need in order to see if the requirement can be relaxed.

Note that requirements analysis may lead to modify/improve early architecture; on the other
side, requirements refinement should stop when not relevant to (not impacting) early
architecture.

36

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Input:

 System/SW functional & non-functional analysis outputs

 Customer requirements

Output:

 System Requirements formalizing System definition,

 Consolidated early Architecture

 Allocation of System functions to architecture components

 Traceability links between requirements, system functional/non-functional analysis
and early architecture

Target document:

 System/Segment Specification (SSS)

Verification and Consistency checks:

External consistency:

 Between System requirements and User Requirements

 Between system requirements and functional/non-functional analysis

Internal consistency:

 Between system requirements and early architecture

 Verify the Requirements Description: coherent, complete, relevant: no contradiction,
no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

37

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.1.2.3.1 Define System Requirements
Based on customer requirements and operational/functional analyses

Define Requirements to implement the former functions, data exchanges, non-functional
constraints… and complement customer-originated requirements.

5.1.2.3.2 Formalise and link system requirements with functional
Analysis

Maintain bi-directional traceability between Requirements and system/SW Need functions,
data flows, interfaces, scenarios…

5.1.2.3.3 Define an early Architecture
Build an early architectural View of the System/SW, based on previous capability engineering
choices & results,

38

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·Focusing on main constraints impacting design & IVVQ (performance, critical parts, dynamic
behaviour, real-time issues, system modes & states, development & ownership cost… and
reuse of existing assets);

Note: restrict early architecture to most significant and risky aspects and parts of the
system/SW

·Allocating system/SW Need functions, data flows …to components of this architecture

·Dealing with first non-functional requirements (Quality of Service, industrial constraints,
subcontracting, modularity, Product Line approach, design to cost…)

·In conformity with operational Need.

The approach to build this early architecture is the same as logical/physical architecture
design described later in this document, and should not be restricted to a functional
breakdown.

Please refer to logical and physical architecture steps

5.1.2.3.4 Check Requirements against need and early architecture
to evaluate, for each requirement:

·the importance of its contribution to operational need

by following links from requirement to functions implementing it, then links from functions
towards operational activities

·its feasibility (against early architecture; see above)

by following links from requirement to functions implementing it, then from functions to
components of architecture,

and consideration of non-functional constraints and viewpoints

·its qualitative cost range (through complexity to map on architecture, integration issues,
complexity of validation scenarios, of preselected technologies when significant…).

5.2 DESIGN THE SOLUTION
ARCHITECTURE

Analyse elements shaping the definition of the solution down to a reference architecture

See sub-tasks description

39

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.1 Explore Solution Space & Alternatives

<Data elaboration description>

Most part of the work is done using and producing **Free Description Documents** and
possibly complementary **Textual Requirements**, along with other kinds of more or less
formalised orientation and decision making support material.

However, some first elements of need and solution sketching may be produced, such as
Operational Mission Analysis, **System Need Specification**, **Designed Solution
Architecture**, especially to outline and compare different notional, high level alternatives,
as preliminary logical architecture candidates. See 'Evaluate & Verify Architecture Choices' for
more details.

<Data elaboration description end>

5.2.2 Design LOGICAL ARCHITECTURE

This perspective aims at building a notional component breakdown of the system at a
coarse-grain level. Based on solution-oriented functional and non-functional analysis
describing the designed behavior (functions, interfaces, capabilities, functional chains &
scenarios, modes & states…), build one or several decompositions of the system into logical
components. Its limited complexity level helps in exploring the solution alternatives.

All major (non-functional) constraints (safety, security, performance, IVV, cost, non-
technical, Etc.) are taken into account and compared to each other so as to find the best
trade-off. This approach is viewpoint-driven, where viewpoints formalize the way these
constraints impact the system architecture.

Outputs of this engineering activity consist of the selected logical architecture which is
described by components and justified interfaces definition, functional behavior, scenarios,
modes and states, formalization of all viewpoints and the way they are taken into account in
the components design. Since the architecture has to be validated against the need analysis,
links with requirements and operational scenarios are also to be produced.

See <Data elaboration description> below

Engineering goals

 Build a coarse-grained breakdown of the system/software in components,
 Convenient to structure further engineering and development while managing
system/software complexity,
 Near optimum Compromise between all major Requirements, Stakes &

40

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Constraints(including non-functional, industrial, performance…),
 Therefore not likely to be challenged later in the development.

 Early define and validate properties of the architecture and the system/software with
regards to non functional constraints

 Iterate on previous early architecture and consolidate its definition

 Get technical Material to support Negotiation by evaluating operational added value
of each requirement

Tasks to be completed during this step

 Define Architecture Drivers and Viewpoints design Rules

 Define notional functional and non-functional Behavior

 Build candidate architectural breakdowns in Components

 Select best Compromise Architecture

Stop Criteria

This activity is achieved when an architecture can be considered – and proven - as the best
compromise according to multi-viewpoint analysis, and it integrates all major constraints
allocated to the System/SW at this level.

This activity should not reach a level of detail dealing with technical/technological constraints
or choices from lower engineering levels, unless they affected or challenged the considered
breakdown and viewpoints reconciliation.

Contributors & Competencies

Major competencies required to complete this step are suggested below:

Required Competencies

Major Expected

Contribution

Possible Contributors (*)

Domain knowledge

 Chief architect
 Systems engineering

41

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

manager
 Functional analyst
 Specialty engineering

expert
 System engineer
 Product line manager
 Simulation expert
 Program manager
 Others

Product & Technical Domain
(incl. Product line)

Product line constraints,
especially reuse

Systems engineering -

Design

Functional & non functional
Analysis

System Analysis
refinement/complement

Architecture definition
(logical, physical)

Architectural design &
compromise

Modeling & viewpoint
engineering techniques

Modeling techniques,
viewpoint building

Value Engineering

Cost effectiveness of solutions

Systems engineering -

Specialties

Technical Simulation

validity of component
behaviour

Specialties engineering
(safety, perf, RAMST…)

Adequacy of Architecture to
specialty

(*) Depending on each organisation, competencies may be allocated to different actors; the
following contributors list is therefore just an example to be adapted to each organisation:

<Data elaboration description>

The first decisions shaping architecture start from **System Need Specification** and
Textual Requirements : a notional designed behaviour is elaborated, being described by

42

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

means of high-level **Design Functions**, **Design Functional exchanges** etc., that
should implement and fulfil **Specified Functions** and **Spec. Functional Exchanges**.

The structuration of the system into notional logical **Components performing Functions**
is performed in relation with the functional analysis above. Components group or segregate
Design Functions according to architectural drivers.

This preliminary, conceptual architecture is completed and verified by defining the way
Specified Capabilities are implemented in each notional architecture candidate
Designed Solution Capabilities.

For this purpose, logical **Design Functional Chains** and **Design Scenarios** are
defined, inspired by **Spec. Functional Chains** and **Specified Scenarios**. They are
applied to **Design Functions** and **Components performing Functions**, and contribute
to the global coherency check of each candidate architecture.

<Data elaboration description end>

This figure provides an inner view of the task Design LOGICAL ARCHITECTURE, in the
context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

43

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.1 Define Architecture Drivers and Viewpoints design
Rules

Define architecture drivers

Architecture drivers are major Stakes & Properties that architecture should favour,
depending on the domain and product policy.

e.g. ease of evolution, real-time constraints, ease of separate development & sub-
contracting, scalability, portability, certification, 24x7 availability...

These are design priorities that will orient and constrain architecture definition, when having
to make choices among various possibilities, in order to ease and secure development and /
or system behaviour.

44

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

As an example, favouring real time constraints may hinder modularity, or loose coupling
between components; portability may prevent from using advanced features of the
underlying platform…

Define main Viewpoint Rules & Criteria

Define and associate to each viewpoint, viewpoint design rules (constitution and checking
rules) in order to express how to build, how to test architecture against each viewpoint.

Define also criteria to confront and reconcile all viewpoints (at least, priority between
viewpoints).

Each architecture design decision should further be checked against architecture drivers
compliance.

Each design and development choice impacting these drivers should also be justified and
checked (e.g. middleware technology threatening modularity or performance…)

Input:

 output of operational and system/SW need analyses

 List of predefined viewpoints rules to analyse the architecture

Output:

 Architecture drivers to be applied to system architecture

 Checklists to confront design choices to architecture drivers

 Viewpoint-analysis rules

Target documents:

 System/Segment Design Document (SSDD)

Verification and Consistency checks:

External consistency:

45

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Between User Requirements, industrial constraints (reuse, product line…) and
Architecture Drivers

Internal consistency:

 Between Architecture drivers and selected Viewpoints & rules

This figure describes the interactions of the considered task with other engineering activities.

5.2.2.1.1 Define Architecture Drivers
major Stakes & Properties that architecture should favour, depending on the domain and
product policy.

e.g. ease of evolution, real-time constraints, ease of separate development & sub-
contracting, scalability, portability, certification, 24x7 availability...

These are design priorities that will orient and constrain architecture definition, when having
to make choices among various possibilities, in order to ease and secure development and /
or system behaviour.

As an example, favouring real time constraints may hinder modularity, or loose coupling
between components; portability may prevent from using advanced features of the
underlying platform…

46

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.1.2 Define main Viewpoints constraining Architecture
main (non functional) concerns susceptible to impact the architecture breakdown (e.g.
performance, safety, interface management, product line & reuse, cost).

Priority and relative importance of these viewpoints with respect to eachother is also to be
defined.

5.2.2.1.3 Define architecture validation Rules & Criteria
know-how to be used in order to help the solution emerge :

·design rules for each viewpoint (e.g. how to group functions, how to minimize interfaces
complexity...): constitution and checking rules to test architecture against each viewpoint.

·compromise criteria, to reconcile viewpoints (e.g. should performance issues be prioritary as
compared to reuse issues)

·verification criteria to check that the final compromise architecture meets all requirements,
operational and industrial needs.

5.2.2.2 Define notional functional and non-functional
Behavior

This task is similar to System Need Analysis 'Define notional functional and non-functional
Behavior'.

Define a functional behaviour that should fulfil former functional analysis, addressing:

 design & description of solution behaviour instead of need expression

 first design decisions reagrding behaviour

Build and maintain justification and traceability links with System Need Analysis functions,
functional chains, scenarios, modes &states, data etc.

More precisely,

 Identify functions required to satisfy and implement all system need analysis
functions

 Complement them with necessary functions that were not identified in need analysis

 List and detail information, data flows, managed, exchanged and required by all
these functions (internal or external to system); including required standards &
interfaces

47

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Identify functional chains traversing the system/SW in order to implement need
defined functional chains (traversing functions & data flows); similarly define
functional scenarios implementing those defined at need level;
 enrich them if needed in order to appropriately define and check solution behaviour

 Identify system/SW modes & states, relate them to functions; enrich them if needed

 Create and maintain traceability links with system need analysis (e.g. between
functions, between functional chains, between scenarios).

Identify all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate fonctions, functional chains, actors… and associated scenarios, and relate them
to system scenarios: e.g.

 Identify non-functional constraints (performance, safety…) and relate them to
concerned functions, functional chains…

 Identify industrial constraints not coming from customer/user: ability to produce, to
test, to maintain, to sub-contract…

 When intending to reuse existing assets, check this functional/non-functional analysis
against these assets for compatibility.

 Enrich system scenarios with non-functional & industrial constraints

 Identify and select main (non functional) viewpoints (concerns) (*) susceptible to
impact the functional analysis.
 Each viewpoint should emphasise a specific set of constraints or expected behaviour,
quality, respect of non-functional properties… At least one viewpoint should be
dedicated to Reuse and Product Policy.

 Try to order them in terms of importance, relative priority.

Ensure traceability/justification links between system need and notional and functional/non-
functional analyses, and check consistency/coherency between them.

Input:

 System Need Analysis outputs

 Customer Requirements

48

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Output:

 Functional & non-functional analysis result (System functional breakdown + dataflow,
functional chains, non functional constraints, scenarios…)

 Traceability between notional & System Need analyses

 List of relevant /critical viewpoints for the target system architecture

Target documents:

 System/Segment Design Document (SSDD) (preliminay)

Verification and Consistency checks:

External consistency:

 Between System Need and notional functional Analysis functions/data…

Internal consistency:

 Between all functional & non-functional elements

 Verify the functional/non-functional Behaviour Description: coherent, complete,
relevant: no contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

49

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.2.1 Perform an internal functional Analysis
Detail and re-factor external functional analysis (esp. functions) addressing

·greater level of detail resolving ambiguities of definition

·and design decisions choosing among various implementation options.

Build and maintain justification and traceability links with external analysis functions.

*** Please refer to System Need Analysis / Perform a functional & non-functional analysis

5.2.2.2.2 Check & Ensure traceability/justification links with system
need analysis

between logical architecture functions and system need functions, functional chains, data
and information, scenarios...

including checking consistency/coherency between them.

5.2.2.3 Build candidate architectural breakdowns in
Components

50

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Starting from previous functional & non-functional analysis results (functions, interfaces,
data flows, behaviours…), build one or several decompositions of the system/software into
logical components[1]. This may lead to considering several alternatives (functional,
structural or both) that should be evaluated and compared to others.

Logical components will later tend to be the basic decomposition for development/sub-
contracting, integration, reuse, product and configuration management item definitions (but
other criteria will be taken into account to define the boundaries for these items).

The component building process consists in

 Grouping functions together in a consistent way (see viewpoints below) by allocating
them to components

 While “inheriting” component interfaces and exchange data flows, from functional
data flows between functions

 And deducing requirement and system scenarios allocation to components, based on
functions allocation & traceability links

 Ensuring traceability and justification links with former steps (functions, components,
scenarios…).

This building process has to deal with each Viewpoint & associated design Rules, either by

 Grouping functions close to each other in the considered viewpoint (e.g. dealing with
the same operational activity, having same hard real-time constraints, sharing
complex interfaces…)

 Or segregating / separating functions that must not be grouped (e.g. functions of
different criticality/certification levels, functions heavily consuming platform
resources…)

 Or mixed.

Yet all viewpoints will not suggest a given breakdown in components:

 functional consistency, modularity, interfaces confinement, resource consumption,
safety/dependability, … favour and allow components outlining in the viewpoint
scope: each of them may suggest a breakdown in components from its own
constraints

 maintainability, cost management, human factors, time-critical Paths, system modes
& states…, are more likely to influence other viewpoints components outlining, rather
than allowing their own viewpoint components definition.

51

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Therefore, all these viewpoints need to be confronted and reconciled with each others: this
can be initiated in this task, in order to reduce the number of candidate architectures, but
must anyway be formalised and completed in the next engineering task below.

Note that in some cases (e.g. performance viewpoint with limited resources), limited parts of
the logical architecture may have to be described as an early physical architecture in order to
validate against viewpoints rules (e.g. performance issues according to available computing
power hypotheses).

During this component building process, the former system need functional analysis may
have to be reworked: among others,

 To detail / refine some functions in order to fit components breakdown (e.g. split one
function into processing, user interaction, data management; or to implement
redundant functional paths)

 To optimise design by defining common use functions, generic ones

 to deal with non-functional viewpoints constraints (e.g. rearrange functions for a
more secure behaviour, or check performance constraints against the use of security
methods such as cryptography)

 To add functions necessary for design description (e.g. technical services,
communication support, monitoring, download…).

[1] Note that the word ‘Component’ should be understood in a general manner, as a
constituent of the system/SW at this level; it will later turn to either a sub-system, an
equipment, a piece of software, a hardware board or function…

Input:

 Selection of relevant/critical viewpoints to describe the architecture

 system/SW functional and non-functional analysis

Output:

52

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Logical Architecture candidates including components functional contents, interfaces
and dataflows, allocated non-functional constraints

Target documents:

 System/Segment Design Document (SSDD) (preliminary)

Verification and Consistency checks:

External consistency:

 Between User Requirements and system/SW need analysis, industrial constraints
(reuse, product line…) and selected viewpoints

Internal consistency:

 Between Architecture drivers, viewpoints and Logical components and/or interfaces

 Between functions to components allocation, and architecture drivers/viewpoints
rules

 Verify each logical architecture Description: coherent, complete, relevant: no
contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

53

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.3.1 Define a system breakdown into logical Components
Starting from previous functional & non-functional analysis results, build one or several
decompositions of the system/software into logical components .

Logical components will later tend to be the basic decomposition for development/sub-
contracting, integration, reuse, product and configuration management item definitions (but
other criteria will be taken into account to define the boundaries for these items).

Initial beakdown is usually initiated by considering how functions should be either groued or
segregated according to functional consistency and viewpoints ocnstraints.

5.2.2.3.2 Allocate functions to components
This building process has to deal with each Viewpoint & associated design Rules, either by

·Grouping functions close to each other in the considered viewpoint (e.g. dealing with the
same operational activity, having same hard real-time constraints, sharing complex
interfaces…)

·Or segregating / separating functions that must not be grouped (e.g. functions of different
criticality/certification levels, functions heavily consuming platform resources…)

·Or mixed.

5.2.2.3.3 Define component interfaces and exchanges
based on allocated functions and deduced from functional exchanges between them;

functional exchanges should here be allocated to component exchanges.

5.2.2.3.4 Deduce scenario allocation to components
based on functions allocation & traceability links, create interaction scenarios between
components and with external actors

5.2.2.3.5 Check each engineering/architecting decision against logical
viewpoints

.check how much this architecture satisfies or infringes each viewpoint design rules, and
expected non-functional properties

.analyse the impact of this architecture on allr key viewpoints (e.g. safety, performance), to
detect discrepancies and "distortions" between viewpoints

.correct and iterate as needed.

54

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.3.6 Check against architecture drivers
verifying that architecture drivers are applied and that design rules are satisfied.

5.2.2.4 Select best Compromise Architecture

This tasks consists in finding and justifying the best compromise between constraints driven
by each viewpoint, in a process called “Viewpoints weaving”. This task is to be performed on
each architectural alternative.

Evaluate candidate architecture(s) against each selected main viewpoint, in order to check
how much this architecture impacts each viewpoint, satisfies or infringes the viewpoint
design rules, and expected non-functional properties. Validate & justify it by its impact on
each Viewpoint.

A general approach (to be adapted to each domain) might be:

1. select most important viewpoint to structure the system/sw (e.g. functional grouping,
or safety level…)

2. check this grouping against most important architecture drivers in order to detect
inconsistencies

3. analyse the impact of this grouping on other key viewpoints (e.g. safety,
performance), to detect discrepancies and "distortions" between viewpoints

4. correct and iterate as needed.

It is recommended to preliminary define reconciliation criteria & rules between viewpoints,
depending on each domain (e.g. “first define software partitions according to DO178B safety
levels, then privilege functional grouping, then confront with time-critical chains; in case of
conflict, privilege the critical chains”).

Validate architecture against operational and system/SW need :

 how it supports operational activities,

 how it deals with functional behaviour (functional contents of each component,
contribution to functional chains), interfaces, data flows & data models…,

55

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 how it satisfies expected properties & constraints,

 how it implements/responds to operational scenarios & capabilities.

Finalise requirements based on this logical architecture.

Input:

 Logical Architecture candidates

Output:

 Logical Architecture description through viewpoints & reconciliation views

 Consolidated Requirements

 Issues and decisions (justifications) statement

Target documents:

 System/Segment Design Document (SSDD) (preliminary)

Verification and Consistency checks:

External consistency:

 Between User Requirements and system/SW need analysis, industrial constraints
(reuse, product line…) and final logical architecture

Internal consistency:

 Between Architecture drivers and functional behaviour, Logical components and/or
interfaces; between these and viewpoints and final logical architecture

 Verify the logical architecture Description: coherent, complete, relevant: no
contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

56

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.2.4.1 Validate conformance of each candidate architecture against
design expectations incl. viewpoints

A general approach (to be adapted to each domain) might be:

1.select most important viewpoint to structure the system (e.g. performance, or safety
level…)

2.check how much this architecture satisfies or infringes the viewpoint design rules, and
expected non-functional properties

3.analyse the impact of this architecture on other key viewpoints (e.g. safety, performance),
to detect discrepancies and "distortions" between viewpoints

4.correct and iterate as needed.

5.2.2.4.2 Validate each architecture against operational and
functional/non functional need

·how it supports operational activities,

·how it deals with functional behaviour (functional contents of each component, contribution
to functional chains), interfaces, data flows & data models…,

·how it satisfies expected properties & constraints,

57

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·how it implements/responds to operational scenarios & capabilities.

5.2.2.4.3 Select & validate best compromise architecture
based on how each architecture fulfils need and main viewpoints analysis results

5.2.2.4.4 Finalise requirements based on logical architecture
based on requirement - function links, and functions to component allocation, allocate
requirements to components and check that architecture fulfils requirements.

Complement requirements as needed.

5.2.3 Design PHYSICAL ARCHITECTURE

This perspective defines the “final” detailed architecture of the system at this level of
engineering, ready to be developed according to implementation, technical and technological
constraints and choices. The tradeoff around resources (e.g. power, communication,
computation etc.) is addressed by introducing hosting physical components for
implementation.

The same viewpoint-driven, functional-based approach as for logical architecture building is
used. The model at that point is considered ready to develop by downstream engineering
teams.

Outputs of this engineering activity consist of the selected physical architecture which
includes global behavior, components to be produced, formalization of all viewpoints and the
way they are taken into account in the components design. Links with requirements and
operational scenarios are also produced.

See <Data elaboration description> below

Engineering goals

 Manage engineering complexity through a structuring architecture,
 easing separation of (technical) concerns,
 favouring safe and separate development of components,
 securing and allowing an efficient IVVQ

 Favour Reuse of legacy Assets, and Product Policy through relevant Design

 Early validate some key features of the solution

58

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Tasks to be completed during this step

 Define Architectural Principles and Patterns

 Define finalised functional and non-functional Behavior

 Consider Reuse of existing Assets

 Build candidate detailled Architectures

 Select and finalise the Physical Reference Architecture

Stop Criteria

This activity is achieved when one architecture can be considered – and proven - as the best
compromise according to multi-viewpoint analysis, if it integrates all major constraints
allocated to the System/SW at this level, and is sufficiently refined to be developed by lower
level component providers.

Contributors & Competencies

Major competencies required to complete this step are suggested below:

Required

Competencies

Major Expected

Contribution

Possible Contributors (*)

Domain knowledge

 Chief architect
 Sub-contractors
 Systems engineering

manager
 Specialty engineering

expert
 System engineer
 Software/hardware

specialists
 IVVQ manager
 Product line manager
 Simulation expert

59

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Program manager
 Configuration manager
 Others

Product & Technical
Domain (incl. Product
line)

Product line constraints,
especially reuse

Systems engineering -

Design

Functional & non
functional Analysis

System Analysis
refinement/complement

Architecture definition
(logical, physical)

Architectural design &
compromise

Modeling & viewpoint
engineering techniques

Modeling techniques,
viewpoint building

Value Engineering

Cost effectiveness of
solutions

Systems engineering -

Specialties

Technical Simulation

Validity of technical choices

Specialties engineering
(safety, perf, RAMST…)

Adequacy of Architecture to
specialty

Technical choices & TRL

Selection of technologies &
derisking

Configuration
Management

Validity of component
breakdown

Systems engineering /

IVVQ

Test & Trials Strategy
Plan

Definition of integration
constraints

Integration means

Realism of integration means

60

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

definition
(*) Depending on each organisation, competencies may be allocated to different actors; the
following contributors list is therefore just an example to be adapted to each organisation:

<Data elaboration description>

The approach is similar to the one performed in 'Evaluate & Verify Architecture Choices', with
more in-depth analysis and technical, design choices, up to the detail required to specify
subsystems and IVVQ.

More detailled description is done of **Design Functions**, **Design Functional
exchanges**,
 adding detailled **Design Exchange contents** to **Design Functional exchanges** to
describe interactions between functions,
 and **Components Exchanges** to design interfaces between components accordingly.

The structuration of the system into finalised **Components performing Functions** is
performed in coherency with the former notional logical architecture, and allocating
Design Functions above to these **Components performing Functions** with
the functional analysis above.

Physical resources hosting the **Components performing Functions** are defined as
Physical Hosting Components and **Physical Component Links** between them, to
which the **Components Exchanges** will be allocated. This completes the components
interface definition.

Each of the former **Components performing Functions**, **Physical Hosting
Components** and **Physical Component Links** is the source of **Configuration Items**
definition, resulting in a first version of the **PBS**.

This detailled architecture is also completed and verified by defining the way **Specified
Capabilities** are implemented in the **Designed Solution Capabilities** of the detailled,
finalised **Designed Solution Architecture**.

For this purpose, **Design Functional Chains** and **Design Scenarios** are defined,
inspired by **Spec. Functional Chains** and **Specified Scenarios**. They are applied to
Design Functions and **Components performing Functions**, and contribute to the
global coherency check of the final architecture.

<Data elaboration description end>

61

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

This figure provides an inner view of the task Design PHYSICAL ARCHITECTURE, in the
context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

5.2.3.1 Define Architectural Principles and Patterns

Identify architecture Invariants (common and generic behaviours, interfaces, functions,
services, …) that simplify definition, implementation, development and integration of the
system/software, by reducing diversity and heterogeneity of features in the architecture.
These are called architectural Patterns.

62

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Rationalisation components & functions: search for similarities in logical architecture
analysis (e.g. a data server simplifying communications of a highly shared data set,
common and generic hardware computing core, data transformation library…)

 Technical functions and services: in order to support common behaviours and
properties expected from the architecture (e.g. communication services, components
lifecycle, supervision/surveillance, reconfiguration means, test & observability
probes…)

 Technological patterns: driven by technology and state-of-the-art in architecting and
hardware/software technology (e.g. component model, client-server paradigm,
hardware FFT computing resource).

These modelling concepts may be considered as catalogue elements providing parts of
models of efficient architectural solutions to be adapted to target components. The use of
architectural patterns is of great benefit for easing separation of concerns, unifying
behaviour, supporting internal standards e.g. component-based design, communication
means, system-level common services…

Standards compliance should be sought as much as possible, while checking their real
adequacy to the planned use in the system/software.

Input:

 state-of-the-art architectural patterns (e.g. components (containers), services..., real-
time architectures & concepts (RMA, queuing networks…)

 Standards

Output

 Architectural patterns applicable to the target architecture (including interfaces)

 Selection of Architectural patterns to be applied to logical/physical components
and/or their interfaces

Target documents:

63

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 System/Segment Design Document (SSDD)

Verification and Consistency checks

External consistency:

 Between domain (User Requirements, non-functional constraints) and applicable
standards / patterns

Internal consistency:

 Between Architectural patterns & standards

5.2.3.2 Consider Reuse of existing Assets

Consider Reuse of existing assets, e.g. COTS, middleware, legacy components, hardware
functions components & boards, frameworks, execution platforms…

In each case, opportunity to reuse should be considered at least for each main viewpoint
identified above:

not only in terms of functional or technical contents, but also interfaces proximity, dynamic
behaviour, operational use (environmental conditions, performance, operational use
scenarios), platform features & resource consumption, and more.

This analysis should lead to identifying gaps between initial development and reuse
conditions, and therefore to feasibility and cost of required adaptations.

Input:

 Existing assets complying or not with standards (ideally, including their reusable
formalisation and/or models)

Output:

 Identification of existing reusable assets applicable to the system/software

64

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Required adaptation developments

Target documents:

 System/Segment Design Document (SSDD)

Verification and Consistency checks:

External consistency:

 Between Asset available description (spec, interfaces documents, applicable
standards…) and asset repository

Internal consistency:

 between assets features, properties and corresponding required functions in the
system/software

5.2.3.3 Define finalised functional and non-functional
Behavior

This task is similar to Logical Architecture 'Perform a functional and non-functional Analysis'.

Define a detailled functional behaviour that details and concretises former notional functional
analysis, addressing:

 ready-to-develop description of designed behaviour

 greater level of detail resolving ambiguities of definition

 and design decisions choosing among various implementation options

 enrichment/confrontation with reused assets

 functions required for technical and technological implementation constraints.

Build and maintain justification and traceability links with Logical Architecture functions,
functional chains, scenarios, modes &states, data etc.

More precisely,

 Identify functions required to satisfy and implement all Logical Architecture notional
functions

65

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Complement them with necessary functions that were not identified Logical
Architecture

 List and detail information, data flows, managed, exchanged and required by all
these functions (internal or external to system); including required standards &
interfaces

 Identify functional chains traversing the system/SW in order to implement need
defined functional chains (traversing functions & data flows); similarly define
functional scenarios implementing those defined at Logical Architecture level;
 enrich them if needed in order to appropriately define and check solution behaviour

 Identify system/SW modes & states, relate them to functions; enrich them if needed

 Create and maintain traceability links with Logical Architecture (e.g. between
functions, between functional chains, between scenarios).

Identify all major dimensioning needs, and [non-functional] constraints, relating them to the
appropriate fonctions, functional chains, actors… and associated scenarios, and relate them
to system scenarios: e.g.

 Identify non-functional constraints (performance, safety…) and relate them to
concerned functions, functional chains…

 Identify industrial constraints not coming from customer/user: ability to produce, to
test, to maintain, to sub-contract…

 When intending to reuse existing assets, check this functional/non-functional analysis
against these assets for compatibility.

 Enrich system scenarios with non-functional & industrial constraints

 Identify and select main (non functional) viewpoints (concerns) (*) susceptible to
impact the functional analysis.
 Each viewpoint should emphasise a specific set of constraints or expected behaviour,
quality, respect of non-functional properties… At least one viewpoint should be
dedicated to Reuse and Product Policy.

 Try to order them in terms of importance, relative priority.

Ensure traceability/justification links between notional and finalised functional/non-functional
analyses, and check consistency/coherency between them.

Input:

66

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Notional logical functional and non-functional analysis

 Reusable assets functional & non functional description

Output:

 Functional & non-functional analysis result (System functional breakdown + dataflow,
functional chains, non functional constraints, scenarios…)

 Traceability between notional & finalised functional analyses

 List of relevant /critical viewpoints for the target system architecture

Target documents:

 System/Segment Design Document (SSDD)

Verification and Consistency checks:

External consistency:

 Between finalised and notional functional Analysis functions/data…

Internal consistency:

 Between all functional & non-functional elements

 Verify the functional/non-functional Behaviour Description: coherent, complete,
relevant: no contradiction, no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

67

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.3.3.1 Complement and detail internal functional Analysis
Detail and re-factor internal functional analysis from logical architecture (esp. functions)
addressing

·greater level of detail resolving ambiguities of definition

·design decisions choosing among various implementation options

·enrichment/confrontation with reused assets

·functions required for technical and technological implementation constraints.

Build and maintain justification and traceability links with previous functional analysis.

*** Please refer to System Need Analysis / Perform a functional & non-functional analysis

68

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.3.3.2 Check & Ensure traceability/justification links with logical
architecture

between physical architecture functions and logical architecture functions, functional chains,
data and information, behavioural components and logical components, functional allocation
to components, scenarios...

including checking consistency/coherency between them.

5.2.3.4 Build candidate detailled Architectures

Starting from the logical architecture above, use the same approach of component building
(please refer to logical architecture 'Build candidate architectural breakdowns in
Components'), in order to finalise implementation decisions and consequences on
architecture.

The component breakdown definition should go in deeper detail by detailing and refining as
necessary, especially identifying

 Behavioural components carrying functional contents (mainly derived from logical
architecture ones, e.g. software components, programmable logic device
programming, hardware processing functions, or equipment) to which functions are
to be allocated

 Implementation components giving resources for behavioural components execution
(e.g. processors, programmable logic devices such as FPGA but also middlewares and
operating systems if needed) through allocation links

 Behavioural component interfaces and exchanges, deduced from functional data
flows (e.g. by grouping)

 Implementation components interfaces and physical links (e.g. bus, network, power
line) on which behavioural exchanges will be allocated

 Architectural patterns that optimise and rationalise the architecture, applied to each
relevant architecture element

 Technology-originated architectural patterns to implement the selected
design/development technologies

 Reused assets.

Remember to check any architecture & design decision against selected architecture drivers
and viewpoints.

Note that a few candidate physical architectures may be defined, compared with each other
in order to elect the best one through multi-viewpoint analysis.

69

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Traceability and justification links with former steps is to be maintained at function level,
component level (with logical components & functions), requirements, scenarios (allocated to
components) etc.

Input:

Logical architecture, architecture drivers

Architectural patterns

Reusable assets

Logical architecture Requirements

Output:

 Candidate physical architecture

 Physical architecture Requirements

Target documents:

 System/Segment Design Document (SSDD)

Verification and Consistency checks:

External consistency:

 Between Physical Architecture and Logical components and Logical interfaces,
viewpoints…

 Between Physical Architecture components requirements and Logical Architecture
requirements

 Between Operational & System/SW need analyses and Physical Architecture

Internal consistency:

 Between Physical components & interfaces and reusable Assets & Architectural
patterns and their implementation in physical architecture

70

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Verify the reference physical architecture Description: coherent, complete, relevant:
no contradiction, no gap, no inaccuracy.

 Between Physical Architecture components requirements & justifications and
Reference physical architecture

 Verify the requirements Description: coherent, complete, relevant: no contradiction,
no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

5.2.3.4.1 Materialize logical components into behavioural Components
breakdown

Behavioural components carrying functional contents (mainly derived from logical
architecture ones, e.g. software components, programmable logic device programming,
hardware processing functions, or equipment) to which functions are to be allocated

5.2.3.4.2 Allocate functions to components
This building process has to deal with each Viewpoint & associated design Rules, either by

·Grouping functions close to each other in the considered viewpoint (e.g. dealing with the
same operational activity, having same hard real-time constraints, sharing complex
interfaces…)

·Or segregating / separating functions that must not be grouped (e.g. functions of different
criticality/certification levels, functions heavily consuming platform resources…)

71

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

·Or mixed.

5.2.3.4.3 Define interfaces and exchanges between behavioural
components

based on allocated functions and deduced from functional exchanges between them, in
accordance with logical components interfaces & exchanges;

functional exchanges should here be allocated to component exchanges.

5.2.3.4.4 Deduce scenario allocation to components
based on functions allocation & traceability links, create interaction scenarios between
components and with external actors

5.2.3.4.5 Define Components Modes & States
based on system and actors modes and states, define the possible contribution of each
component.

consider component own behaviour, and define its own modes and states if needed, based
on functional analysis allocation to the component.

consider communications with other components or actors (incl. external systems), and
define component dedicated modes and states describing the contribution of the component
to the communication protocol.

verify consistency and coherency of all these modes and states, the condition of transitions
between them (notably based on functional exchanges), and the related availability of
architecture elements (functions, functional chains, component and sub-components etc.) in
each of them.

5.2.3.4.6 Check & Ensure traceability/justification links with logical
architecture

between physical architecture functions and logical architectured functions, functional chains,
data and information, behavioural components and logical components, scenarios...

including checking consistency/coherency between them.

72

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.3.4.7 Define implementation components to deliver processing
resources

Implementation components giving resources for behavioural components execution (e.g.
processors, programmable logic devices such as FPGA but also middlewares and operating
systems if needed) through allocation links

5.2.3.4.8 Implement behavioural components on implementation
components

Implementation components giving resources for behavioural components execution (e.g.
processors, programmable logic devices such as FPGA but also middlewares and operating
systems if needed) through allocation links

5.2.3.4.9 Define physical links and ports between implementation
components

based on allocated functions and behavioural components, and deduced from functional and
behavioural exchanges between them all.

5.2.3.4.10 Allocate component exchanges to physical links
based on allocated behavioural components and implementation components, and deduced
from behavioural exchanges;

behavioural exchanges should here be allocated to physical links.

5.2.3.4.11 Check each engineering/architecting decision against physical
viewpoints

.check how much this architecture satisfies or infringes each viewpoint design rules, and
expected non-functional properties

.analyse the impact of this architecture on allr key viewpoints (e.g. safety, performance), to
detect discrepancies and "distortions" between viewpoints

.correct and iterate as needed.

5.2.3.4.12 Identify Architectural alternatives
consider and formalise different ways to implement expected behaviour, different allocation
of a functional behaviour on behavioural components, different deployments of behavioural

73

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

components on resource implementation components, including different non-functional
properties and qualities of service.

5.2.3.4.13 Check against architecture drivers
verifying that architecture drivers are applied and that design rules are satisfied.

5.2.3.4.14 Perform finer-grain analyses (e.g. per viewpoint)
check in deeper details design hypotheses and choices, notably using specialised simulation
and analyses models.

See also 'Perform Speciality or Discipline Analyses'

5.2.3.4.15 Update viewpoints models & figures
collect and synthetise results of fine-grained analyses and simulations to enrich and valuate
the phsyical architecture model.

5.2.3.5 Select and finalise the Physical Reference
Architecture

Starting from the candidate architectures identified previously, use the same approach of
best compromise selection as in logicial architecture (please refer to logical architecture
'Select best Compromise Architecture'), in order to finalise the reference architecture that will
be designed and developped by sub-systems, software, hardware components engineering
teams.

Drive an early verification & check

 Define finer-grained and more realistic behaviour models in order to check
architecture compromise against finer analyses.

 Check the correctness of the physical architecture through simulation means, formal
check… of these models, for each major viewpoint to be refined.

 Then update architectural viewpoints with results of these fine-grain analyses (e.g.
estimations of resource consumption, fault propagation equations, more realistic real-
time activation & behaviour rules, true hardware metrics…), and rerun a multi-
viewpoint analysis to maintain an acceptable compromise/optimum solution.

74

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Consolidate against Need & Finalise

Check final reference architecture against operational & System/SW functional/non-
functional analyses.

Derive, allocate and define requirements for each of the newly defined components of the
physical architecture.

Check and justify these requirements against physical architecture and former requirements.

Input:

 Logical architecture, architecture drivers

 Logical architecture Requirements

 Architectural patterns

 Detailed functional and non-functional behavior

 Candidate architectures

Output:

 Reference physical architecture

 Physical architecture Requirements

Target documents:

 System/Segment Design Document (SSDD)

Verification and Consistency checks:

External consistency:

 Between Physical Architecture and Logical components and Logical interfaces,
viewpoints…

 Between Physical Architecture components requirements and Logical Architecture
requirements

 Between Operational & System/SW need analyses and Physical Architecture

Internal consistency:

75

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Between Physical components & interfaces and reusable Assets & Architectural
patterns and their implementation in physical architecture

 Verify the reference physical architecture Description: coherent, complete, relevant:
no contradiction, no gap, no inaccuracy.

 Between Physical Architecture components requirements & justifications and
Reference physical architecture

 Verify the requirements Description: coherent, complete, relevant: no contradiction,
no gap, no inaccuracy.

This figure describes the interactions of the considered task with other engineering activities.

5.2.3.5.1 Validate conformance of each candidate architecture against
design expectations incl. viewpoints

A general approach (to be adapted to each domain) might be:

1.select most important viewpoint to structure the system (e.g. performance, or safety
level…)

2.check how much this architecture satisfies or infringes the viewpoint design rules, and
expected non-functional properties

3.analyse the impact of this architecture on other key viewpoints (e.g. safety, performance),
to detect discrepancies and "distortions" between viewpoints

4.correct and iterate as needed.

76

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.2.3.5.2 Validate each architecture against operational and
functional/non functional need

·how it supports operational activities,

·how it deals with functional behaviour (functional contents of each component, contribution
to functional chains), interfaces, data flows & data models…,

·how it satisfies expected properties & constraints,

·how it implements/responds to operational scenarios & capabilities.

NOTE: also using traceability links and functional-to-architecture allocation

5.2.3.5.3 Select and validate best compromise Architecture
based on how each architecture fulfils need and main viewpoints analysis results

5.2.3.5.4 Promulgate Reference Architecture
finalise the definiiton and later use it as the unique reference for further engienering,
development & IVVQ

5.2.3.5.5 Finalise requirements based on physical architecture
based on requirement - function links, and functions to component allocation, allocate
requirements to components and check that architecture fulfils requirements.

Complement requirements as needed.

5.2.4 Analyse the solution

The goal is to early verify that the solution as designed meets all stakeholders expectations
and requirements, industrial and project constraints (including cost, schedule, resources and
more), notably functional and non-functional expectations.

A coarse-grained multi-viewpoint analysis is performed using the architecture core model, so
as to discard irrelevant architecture alternatives as early as possible; this analysis shall be
fast enough so as to be performed for each architecture design decision. It will evaluate how
much the expectations of each viewpoint are satisfied according to design analysis rules for
each alternative.

77

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Then, in order to confirm the validity of architecture choices, for each major engineering and
discipline or specialty viewpoint, a single-viewpoint, finer-grained dedicated analysis is
performed, using more detailed representation, dedicated languages and models, specific
analysis techniques and tools. The representation used for these analysis may be partly
initialised from the architecture model contents, both for cost-effectiveness and coherency
mastering.

If a single-viewpoint analysis shows inadequacy of the architecture with expectations, then a
new multi-viewpoint analysis should be performed so as to find a better compromise.

See sub-activities.

5.2.4.1 Perform Speciality or Discipline Analyses

In order to confirm the validity of architecture choices, for each major engineering and
discipline or specialty viewpoint, a single-viewpoint, finer-grained dedicated analysis is
performed, using more detailed representation, dedicated languages and models, specific
analysis techniques and tools. The representation used for these analysis may be partly
initialised from the architecture model contents, both for cost-effectiveness and coherency
mastering.

<Data elaboration description>

Designed Solution Architecture elements, e.g. **Components performing
Functions**, are used to initialise **Simulation Models**, **Specialty Analysis Models**,
Architecture viewpoint Models.

Simulation Scenarios, **Specialty Analysis Context** and **Viewpoint Analysis
Context** are also initialised using **Design Scenarios**.

Then **Simulation Results**, **Specialty Analysis Results**, and **Viewpoint Analysis
Results** are used to valuate **Designed Solution Architecture** elements.

<Data elaboration description end>

5.2.4.2 Perform multi-Disciplines Trade-off

A coarse-grained multi-viewpoint analysis is performed using the architecture core model, so
as to discard irrelevant architecture alternatives as early as possible; this analysis shall be
fast enough so as to be performed for each architecture design decision. It will evaluate how
much the expectations of each viewpoint are satisfied according to design analysis rules for
each alternative.

78

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

If a single-viewpoint analysis shows inadequacy of the architecture with expectations, then a
new multi-viewpoint analysis should be performed so as to find a better compromise.

<Data elaboration description>

Operational Mission Analysis and **System Need Specification** elements are valuated
or characterised with expected properties and constraints according to each viewpoint.
Complementary **Viewpoint Elements** can be added (e.g. feared events) to express these
expectations. **Designed Solution Architecture** elements can also be characterised
similarly for each viewpoint.

Then, viewpoint-specific analysis are performed on the model, so as to check conformity to
expectations. **Viewpoint Analysis Results** are added of fed with results from analyses, so
as to compare each architecture alternative in terms of fulfilment of each viewpoint
expectations.

<Data elaboration description end>

5.3 PREPARE AND PERFORM
DEVELOPMENT AND IVVQ

Define the requirements for each component of the solution to be purchased or built; define
the strategy to integrate, test and verify the solution; then run design & development and
integration, verification validation, qualification

See sub-tasks description

This figure provides an inner view of the task PREPARE AND PERFORM DEVELOPMENT AND
IVVQ, in the context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

79

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.1 Define BUILDING STRATEGY - contracts for
development & IVVQ

The fifth and last perspective is a contribution to EPBS (End-Product Breakdown Structure)
building, taking benefits from the former architectural work, to enforce components
requirements definition, and prepare a secured IVVQ (Integration Verification Validation
Qualification).

All choices associated to the system/SW chosen architecture, and all hypothesis and
constraints imposed to components and architecture to fit need and constraints, are
summarized and checked here. IVV Strategy, including phasing/versioning, releases
contents, integration trees, test means and enabling systems shall be defined based on the
former perspectives models. Test campaigns are defined based on capabilities and scenarios.

Outputs from this activity are mainly “component Integration contracts” collecting all
necessary expected properties for each constituent to be developed, on one side, IVV
strategy and Test Campaigns/procedures on the other side.

Engineering goals

 Define contractual requirements for components and EPBS (End Product Breakdown
Structure)

 Define an architectural frame & constraints to master components development &
integration

80

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 define an integration, verification, validation strategy defining contents of time-
related releases/deliveries, their functional and structural contents, enabling systems
and test means, and test campaigns to be run for each release

Tasks to be completed during this step

 Define a Components IVVQ Strategy

 Define & enforce a PBS and Component Integration Contract

Stop Criteria

This activity is achieved when an agreement with lower level stakeholders (incl. Lower level
Engineering, suppliers) on EPBS and Integration contract has been obtained.

Contributors & Competencies

Major competencies required to complete this step are suggested below:

Required

Competencies

Major Expected

Contribution

Possible Contributors (*)

Systems engineering -
Specialties

 Chief architect
 Sub-contractors
 Systems engineering

manager
 Software/hardware

specialists
 IVVQ manager
 Program manager
 Configuration manager
 Others

Technical choices & TRL

Selection of technologies
& derisking

PBS

Definition of PBS based

81

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

on components

Configuration
Management

Adequacy of PBS &
configurations

Systems engineering /

IVVQ

Test & Trials Strategy Plan

Definition of integration
constraints

Integration means
definition

Definition of Component
test means

(*) Depending on each organisation, competencies may be allocated to different actors; the
following contributors list is therefore just an example to be adapted to each organisation:

This figure provides an inner view of the task Define BUILDING STRATEGY - contracts for
development & IVVQ, in the context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

82

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.1.1 Define a Components IVVQ Strategy

Defining an IVVQ strategy is out of scope for this document; nevertheless, the approach
presented here may contribute to this strategy elaboration in the following way:

 Define IVVQ scenarios for components, based on physical architecture scenarios and
functional chains realising Operational Need capabilities, scenarios and operational
processes.

83

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Define the contents of partial product deliveries based first on required capabilities,
then on the contribution of requirements to operational tasks & goals (from all former
perspectives, requirements analysis & check against need).

 Define the contents of integration steps (increments) based on cross- viewpoints
impact analysis (other components, communications & interfaces, shared resources,
critical paths, functional chains…): e.g. list other components from which a
component depends, in order to include them in the same integration step .

 Test both requirements and operational need at once, using traceability between
requirements, operational/functional analysis and architecture. The path should be:

1. relate tests to scenarios and functional chains from which they are specified

2. relate each tests step to model elements involved in it (functional chains, scenarios,
components, interfaces, etc.)

3. for each test successfully passed, check model elements involved

4. when all tests related to a model elements are passed, consider this element as
verified

5. when all model elements and tests linked to a textual [user] requirement are verified,
consider that the requirement is verified

Note that the method allows a fine-grained integration plan definition, thanks to viewpoints
impact analysis:

In former steps (logical and physical architecture design), creating viewpoints dedicated to
IVVQ may help in defining components outlines and integration steps:

 identifying integration dependencies, functions or components to be simulated in
early steps of IVVQ, and integration paths transverse to components (e.g. integrating
in one stage all functions contributing to a sensor management, among all
components)

 if needed, outlining components in order to favour their integration at once

 or identifying “integration paths” transverse to components, and using viewpoints
analysis to identify necessary contents of each integration path thanks to
dependencies modelling.

See <Data elaboration description> below

Input:

84

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Physical reference architecture and requirements.

 Operational and system/SW need analyses

Output:

 Components IVVQ strategy

 Target document:

 IVVQ plan

 System Integration and tests plan, including specification of test campaigns and tests
contents

Verification and Consistency checks:

External consistency:

 Between Components IVVQ strategy and Operational needs, requirements, reference
architecture, architectural viewpoints.

Internal consistency:

 See internal consistency specified at previous steps

 <Data elaboration description>

Defining the **IVVQ Strategy** starts with defining the expected **IVV Workflow** :
 for each of planned **IVV Steps** of IVVQ, the workflow describes its contents in one or
more **IVV Releases** to be verified and possibly delivered.

This contents is mainly defined by the **Designed Solution Capabilities** that describe what
the solution should deliver to the users.
 These Solution capabilities consist of **Design Scenarios** and **Design Functional
Chains**, that describe some typical use cases or user stories, that should be achievable
with the release.

Scenarios and functional chains involve **Design Functions** that also contribute to defining
the release. All are related to **Textual Requirements** that they contribute to verifiy.

Note that these **Designed Solution Capabilities** should be traceable towards user-
oriented **Specified Capabilities** and **Users Missions & Capabilities**, that should have

85

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

been prioritized according to value Analysis. This value analysis should drive the definition of
IVVQ order and priorities.

 The **IVVQ Strategy** also includes the **Assembly Order Tree**, defining the logical
order of building the **System Parts Assembly**, based on the **PBS**, Product
Breakdown Structure of the architecture, and its **Configuration Items**.

The **IVV Order Tree** complements the **Assembly Order Tree** by adding, for each of
the **IVV Steps**, the **IVV Configurations** to be set. These IVV Configurations include
the **System Parts Assembly** required for the step (from the **Assembly Order Tree**),
and the **Enabling/Test Means Definition** necessary to perform the expected tests on the
components to be assembled and tested.

<Data elaboration description end>

This figure describes the interactions of the considered task with other engineering activities.

5.3.1.1.1 Define IVVQ scenarios based on need analysis
using operational & system need scenarios, and associated physical scenarios linked to them
by traceability.

For partial integration, allocate these scenarios to relevant components

86

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.1.1.2 Define customer deliveries based on operational capabilities
based on the contribution of requirements to operational tasks & goals (from requirements
analysis & check against need).

using traceability links between need and architecture

5.3.1.1.3 Optimise contents & order of integration steps
based on cross- viewpoints impact analysis: e.g. list dependencies of a component in order
to include them in the same integration step (communications & interfaces, shared
resources, critical paths, functional chains…).

5.3.1.1.4 Justify requirements fulfilment
both requirements and operational need at once, using traceability between requirements,
operational/functional analysis and architecture

5.3.1.1.5 Plan & manage IVVQ
Check consistency of all elements contributing to the IVVQ strategy.

During IVV, manage impacts of components maturity level and deliveries delays, using the
architecture model to identify consequences on test plans, necessary non-regression testing,
etc.

5.3.1.1.6 specify integration & test means
based on analysis of dependencies between components, and specifying test means thanks
to corresponding component description (interfaces, behaviour thanks to internal functions &
scenarios...)

5.3.1.2 Define & enforce a PBS and Component Integration
Contract

At this step, Configuration Items (CI: either component software CSCI or hardware HWCI)
contents are to be defined in order to build a Product Breakdown Structure (PBS) , e.g.

 By grouping various former components in a bigger CI easier to manage,

 Or by federating various similar components in a single implementation CI that will be
instantiated multiple times at deployment.

87

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

The component integration contract should therefore be based on:

 Operational & System/SW Views allocation (scenarios, system functions, properties)

 Resulting Functional, Interface, Performance Requirements

 Common system/SW-wide expected behaviour thanks to architectural Patterns &
Framework Standards compliance

 Non-functional Requirements as defined and checked in each main architectural
viewpoint
 (e.g. incl. Critical paths, resource Consumption, ability to reset/restart, redundancy,
safety…).

It should be built, negociated/validated with component suppliers.

This integration contract should mention (same as above)

 Expected services, functions

 Interfaces with other components and outside

 Contribution to the system/SW-wide information model (or global interchanged data)

 Dynamic behaviour expectations

 Requested other services, components… to be used by it

 Expected operational performances

 Non functional performances, expected Quality of Service

 Internal modes & states expected management

 Contribution to system management (surveillance, start-up/shutdown, redundancy
issues…)

 For a software component: allocated – allowed - resources (CPU, memory,
communication bandwidth, real-time tasking & priorities…)

 interface with framework, middleware, hardware technical services (e.g.
communication API, hardware drivers…)

 For a hardware component: environment constraints (temperature, vibration,
ambient atmosphere, mechanical constraints…), allocated – allowed - resources
(power consumption & dissipation, cooling…)

88

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Define means to early validate or check the respect of components contract:

 Supplement Requirements for Technical functions, services (middleware, Framework,
hardware cores, execution Platform…) to ensure that check, and secure system behaviour if
one component contract is not fulfilled.

See <Data elaboration description> below

Input:

 Physical architecture;

 Requirements;

 Operational and system/SW need analyses

Output:

 Product Breakdown Structure (PBS)

 Components Integration contracts including Configuration Items (CI) definition

Target documents:

 Contract definition documents (e.g. preliminary sub-systems SSS, software SRSs),
EPBS

Verification and Consistency checks:

External consistency:

 Between Physical components (including interfaces) and Configuration Items

 Between EPBS requirements and Physical Architecture requirements

 Between Operational & system/SW need analyses & physical architecture, and
component integration contracts

Internal consistency:

 Between EPBS requirements and Configuration Items

89

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Verify the EPBS & component integration contracts Description: coherent, complete,
relevant: no contradiction, no gap, no inaccuracy.

<Data elaboration description>

Subsystem (or component) need definition is extracted from **Designed Solution
Architecture** : functional contents from allocated functions, behaviour from scenarios and
functional chains in which it is involved, allocated modes and states; external interfaces and
data model, including exchanges, physical links etc.

Subsystem expected validation test procedures and Test Casess are defined mainly based on
system physical architecture scenarios and functional chains.

Scenarios allocated to each subsystem should be defined in physical architecture, for those
tests that are to be used as subsystem validation scenarios, from the system engineering
point of view.

Same for functional chains.

<Data elaboration description end>

This figure describes the interactions of the considered task with other engineering activities.

90

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.1.2.1 Formalise Component development & integration contract
The component integration contract is to be defined for each component of physical
architecture to be developped; it is built by using components description in physical
architecture, and should include:

·Operational & System/SW Views allocation (scenarios, system functions, properties)

·Resulting Functional, Interface, Performance Requirements

·Non-functional Requirements as defined and checked in each main architectural viewpoint

(e.g. incl. Critical paths, resource Consumption, ability to reset/restart, redundancy,
safety…).

It should be built, negociated/validated with component suppliers.

This integration contract should mention (same as above)

·Expected services, functions

·Interfaces with other components and outside

·Contribution to the system/SW-wide information model (or global interchanged data)

·Dynamic behaviour expectations

·Requested other services, components… to be used by it

·Expected operational performances

·Non functional performances, expected Quality of Service

·Internal modes & states expected management

·Contribution to system management (surveillance, start-up/shutdown, redundancy issues…)

5.3.1.2.2 Build Product Breakdown Structure
a tree of Configuration Items (CI: either component software CSCI or hardware HWCI), built
by

·grouping various former components in a bigger CI easier to manage,

·Or federating various similar components in a single implementation CI that will be
instantiated multiple times at deployment.

Main contents of the PBS are physical components (behavioural and implementation), and
physical links.

91

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.2 Perform Sub-System Engineering

Out of scope, but part of engineering activities may take benefit from applying Arcadia.

5.3.3 Perform HW & mechanical engineering

Out of scope, but part of engineering activities may take benefit from applying Arcadia.

5.3.4 Perform SW engineering

Out of scope, but part of engineering activities may take benefit from applying Arcadia.

5.3.5 Define IVVQ Environment

Based on IVV strategy information originated from model, design and develop test
environment and etst campaigns in details.

See sub-tasks description

This figure describes the interactions of the considered task with other engineering activities.

92

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.5.1 Build IVV Test Suites and campaigns

<Data elaboration description>

For each of the **IVV Steps** of the **IVVQ Strategy**, a set of **Test Campaigns** is
defined in order to achieve its objectives (as mentioned in **Designed Solution
Capabilities**).

Each of the **Test Campaigns** is composed of one or more **Test Suites**, each being in
turn decomposed in **Test Cases**, consisting of elementary **Test Steps**.
 Each of them is built based on the **Design Functions** and **Components Exchanges**
between system **Components performing Functions** and **External systems/actors**
(users, operators, other systems).

93

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 The interfaces are defined based on **Design Functional exchanges**, **Components
Exchanges**, **Design Exchange contents**, etc.

At Integration stage, the definition of each of the **Test Suites** and **Test Cases** is
mainly based on physical architecture **Design Scenarios** and **Design Functional
Chains**.

At Verification stage, the definition of each of the **Test Suites** and **Test Cases** is
driven by System need **Specified Scenarios** and **Spec. Functional Chains**.
 Each of the system need **Specified Scenarios** is to be transformed into one (or more)
system solution **Design Scenarios**; same for **Spec. Functional Chains** and **Design
Functional Chains**. This is aided by traceability links between Need and Solution.

At Validation stage, the definition of each **Test Suites** and **Test Cases** is driven by
Operational Need **Users Missions & Capabilities**, **Operational Scenarios**, and
Operational Processes, along with System need **Specified Scenarios** and **Spec.
Functional Chains**.
 Each **Operational Scenarios** or **Specified Scenarios** is to be transformed into one
(or more) system solution **Design Scenarios**; same for **Spec. Functional Chains** and
Design Functional Chains. This is aided by traceability links between Need and Solution.

<Data elaboration description end>

5.3.5.2 Build Test Means & enabling Systems

<Data elaboration description>

Enabling/Test Means Definition is performed so as to specify their requested behaviour,
along with their interfaces with system parts under test.
 For each of the **IVV Steps**, the corresponding **Enabling/Test Means Definition** is
performed, so as to version them, and to include them in the **IVV Configurations** of the
IVV Steps.

In order to test some **Components performing Functions** in the **IVVQ Strategy**, the
functional part of the system physical architecture which interacts with them is outlined.
 This outline consists in **Design Functions**, **Design Functional Chains** parts and
Design Scenarios to be implemented by Test Means for the current **IVV Releases**,
based on the **Test Campaigns** to be performed.

Definition of interfaces between test means and system parts is based on this functional
analysis, and on components interfaces definition : **Design Functional exchanges** and
Components Exchanges, **Design Exchange contents**, **Physical Component
Links** etc.

<Data elaboration description end>

94

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3.6 Perform IVVQ

Out of scope, but investigation and bug-fixing activities may take benefit from exploiting
Arcadia architecture models.

5.3.6.1 Perform Integration

<Data elaboration description>

Main outputs are **Test Results** and **Problem Reports** for each of the **Test
Suites**, **Test Cases** and **Test Steps** previously defined.

Problem Reports can apply to most elements of solution description, mainly **Designed
Solution Architecture** elements.

<Data elaboration description end>

5.3.6.2 Perform Verification

<Data elaboration description>

Similar to 'Perform Integration'. Main outputs are **Test Results** and **Problem
Reports** for each of the **Test Suites**, **Test Cases** and **Test Steps** previously
defined.

Problem Reports can apply to most elements of solution description, mainly **Designed
Solution Architecture** elements, notably **Components performing Functions**.

Conformity Matrix will use the links between **Test Results**, **Test Cases** etc., and
customer/User **Textual Requirements**, possibly through **Designed Solution
Architecture** elements.

<Data elaboration description end>

5.3.6.3 Perform Solution Validation

<Data elaboration description>

95

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Similar to 'Perform Integration' and 'Perform verification'. Main outputs are **Test Results**
and **Problem Reports** for each of the **Test Suites**, **Test Case** and **Test
Steps** previously defined.

Problem Report can apply to most elements of solution description, mainly **Designed
Solution Architecture** elements, notably **Components performing Functions**.

Conformity Matrix will use the links between **Test Results**, **Test Cases** etc., and
customer/User **Textual Requirements**, possibly through **Designed Solution
Architecture** elements.

<Data elaboration description end>

5.3.6.4 Perform Qualification

Out of scope.

5.4 DEFINE AND EXPLOIT THE PRODUCT
LINE

Identify the common and optional features that can ease and reduce cost of each product
building while offering a relevant portfolio to customers; apply to engineering assets

See sub-tasks description

This figure provides an inner view of the task DEFINE AND EXPLOIT THE PRODUCT LINE, in
the context of Arcadia core perspectives.

For each of the first level tasks presented here, only links with other core perspectives are
displayed.

For a complete view of links with other engineering tasks and activities, see the figure
dedicated to this first level task.

96

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.4.1 Define Product Line Variability

Segment users operational need analysis based on market segmentation; create a first set of
operational variabilities (e.g. core generic missions, capabilities, contexts, and options).

Contribute to shape the offer and commercial options portfolio by defining variabilities on
specification features expected from the solution, in accordance with former operational
segmentation.

Analyse consequences of operational and specification variabilities on solution definition, incl.
architecture;
 seek for simplification of variabilities thanks to existing relations in architecture (e.g. select a
feature based on a capability, rather than on related functions and components) ;
 check for consistency between architecture and variabilities, adapt architecture if needed,
revisit variabilities accordingly.

Formalise the variabilities at each perspective level, in an Engineering Feature Model
describing:

• Commonality & variability: Mandatory Features, Options, Configurable Options,
Alternatives,

• Variability Constraints.

This figure describes the interactions of the considered task with other engineering activities.

97

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.4.1.1 Define operational & Market Segmentation
Variabilities

Segment users operational need analysis based on market segmentation; create a first set of
operational variabilities (e.g. core generic missions, capabilities, contexts, and options).

<Data elaboration description>

Starting from Product Line strategy with roadmap, Value proposition, Business model and
Pricing guideline, the market segmentation is formalised by defining **Operational
Segmentation Variability** by means of **Features**.

Most of these **Features** apply to different **Users Missions & Capabilities** that may be
needed or optional for different users and markets. Selecting choices in a feature gives

98

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

optional access to corresponding **Operational Processes** and **Operational Scenarios**,
Operational Activities, etc.

<Data elaboration description end>

5.4.1.2 Define Product specification and commercial Offer
variabilities

Contribute to shape the offer and commercial options portfolio by defining variabilities on specification
features expected from the solution, in accordance with former operational segmentation.

<Data elaboration description>

In continuity with market segmentation, the major options and contents of the portfolio are
formalised by defining **Portfolio Specification Variability** by means of **Features**. The
main starting point for this is **Operational Segmentation Variability**, along with Product
Line strategy with roadmap, Value proposition, Business model and Pricing guideline.

Most of the portfolio variability **Features** apply to different **Specified Capabilities**
expected from the system for different users and markets. These **Features** should be
initialised in accordance with those applied to **Users Missions & Capabilities** identified in
Operational Segmentation Variability.

Selecting options or choices in a feature gives optional access to corresponding **Spec.
Functional Chains** and **Specified Scenarios**, **Specified Functions**, or interactions
with **External systems/actors**, etc. Their identification should also be initialised starting
from **Operational Scenarios**, **Operational Processes**, etc., defined in **Operational
Segmentation Variability** **Features**.

<Data elaboration description end>

5.4.1.3 Ensure consistency between Solution Architecture
and product Variability

Analyse consequences of operational and specification variabilities on solution definition, incl.
functional contents, behavior, interfaces, architecture components, simulation & test means, enabling
systems, Test Campaignss, etc.;
 seek for simplification of variabilities thanks to existing relations in architecture (e.g. select a feature
based on a capability, rather than on related functions and components) ;
check for consistency between architecture and variabilities, adapt architecture if needed, revisit
variabilities accordingly.

<Data elaboration description>

99

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

The definition of a design-oriented and design-driven **Solution Variability** starts from the
need-related variabilities defined in **Portfolio Specification Variability**.

For each of the **Portfolio Specification Variability** **Features**, its "footprint" on the
Designed Solution Architecture is determined using **System Need Specification** as
an intermediate. This is done using links between **Features** and **Specified
Capabilities**, then links between **Specified Capabilities** and **Designed Solution
Capabilities**, between **Spec. Functional Chains** and **Design Functional Chains**,
between **Specified Functions** and **Design Functions**, etc.

Then, **Features** constituting **Solution Variability** are created, some being derived
from **Portfolio Specification Variability** ones, other being added for design
considerations. These **Features** apply notably to **Designed Solution Capabilities** and
related **Design Functions**, **Design Functional Chains**, **Design Scenarios**, and
also on **Components performing Functions**, using links with **Design Functions**.

They are also likely to be "propagated" towards **Physical Hosting Components** according
to their implementation of **Components performing Functions**.

Reference Configurations are also initialised to shape contents of the solution for each
standard product offer. Their initial outline is based on former elements, defining
Variability Choices among **Features** of the **Solution Variability** .

A verification of coherency should be done during all this process : for example, are the
Components performing Functions designed so as to separate optional **Design
Functions** according to **Features** definition ?.

Are all combinations of features possible due to architecture constraints ? Can several
features be simplified into one because of architecture dependencies or constraints ?.

This may lead to modifying or simplifying **Features** of the **Solution Variability**.

<Data elaboration description end>

5.4.2 Apply Variability to product & projects assets

For each variability identified in the product, analyse all engineering artefacts and assets, to
determine if and how each of them is affected. Apply this approach to the product itself as a
whole, then for each project according to selected variabilities.

In order to simplify the work for each project, define reference configurations that will select
default sets of variabilities, according to the portfolio.

100

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

This figure describes the interactions of the considered task with other engineering activities.

5.4.2.1 Setup environment for the Domain engineering

<Data elaboration description>

Features constituting **Solution Variability** are applied notably to **Designed
Solution Capabilities** and related **Design Functions**, **Design Functional Chains**,
Design Scenarios, and also on **Components performing Functions**, using links with
Design Functions.

They are also likely to be "propagated" towards **Physical Hosting Components** according
to their implementation of **Components performing Functions**.

Beyond the design and architecture description, most engineering data should be considered
in this process, such as **Textual Requirements**, **Simulation Model Elements** and
Simulation Scenarios, **Specialty Model elements** and **Specialty Analysis
Context**, **Architecture viewpoint Models** **Viewpoint Analysis Context** and
Viewpoint Elements, **Test Suites**, **IVV Releases**, **IVV Configurations**,
Enabling systems description Elements, etc.

<Data elaboration description end>

5.4.2.2 Setup environment for each Project or Reference
Configuration

<Data elaboration description>

101

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

The **Project Configuration** is built by performing **Variability Choices** on each of the
Features present in the **Solution Variability**. As much as possible, this **Project
Configuration** should be reusing **Reference Configurations**.

This results in selecting the engineering data needed for the project as referenced by the
Features , among **Textual Requirements**, **Designed Solution Architecture**,
Simulation Models, **Specialty Analysis Models**, **Test Suites**, **Enabling/Test
Means Definition**, etc.

check for consistency and correctness;

capitalise reusable assets to be included in the product line.

<Data elaboration description end>

5.4.2.3 Define Product Reference Configurations

Define standard reference configurations to support the portfolio, according to market segmentation
and commercial product line strategy.

Check consistency of each reference configuration with regards to engineering assets such as
definition, architecture, etc.

<Data elaboration description>

Reference Configurations are defined, to shape contents of the solution for each
standard product offer.They define **Variability Choices** among **Features** of the
Solution Variability.

A verification of coherency should be done during all this process, regarding consistency,
coherency, feasibility. This verification should apply on most engineering data addressed by
the configuration, such as : **Textual Requirements**, **Designed Solution Architecture**,
Simulation Models, **Specialty Analysis Models**, **Test Suites**, **Enabling/Test
Means Definition**, etc.

<Data elaboration description end>

102

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

6

